26 research outputs found

    Author Correction: FAM222A encodes a protein which accumulates in plaques in Alzheimer’s disease (Nature Communications, (2020), 11, 1, (411), 10.1038/s41467-019-13962-0)

    Get PDF
    In the original version of the manuscript, the image shown in Figure 4g, bottom row (Aβ1–42 + rAggregatin), under “6h” was incorrect. This image incorrectly showed the same sample as shown in the original Figure 4g, top row (Aβ1–42), under “0.5h”. The correct version of figure 4g is as follows: (Figure presented.) which replaces the previous incorrect version: (Figure presented.)

    Seasonal Local Temperature Responses to Paddy Field Expansion from Rain-Fed Farmland in the Cold and Humid Sanjiang Plain of China

    No full text
    Numerous studies have documented the effects of irrigation on local, regional, and global climate. However, most studies focused on the cooling effect of irrigated dryland in semiarid or arid regions. In our study, we focused on irrigated paddy fields in humid regions at mid to high latitudes and estimated the effects of paddy field expansion from rain-fed farmland on local temperatures based on remote sensing and observational data. Our results revealed much significant near-surface cooling in spring (May and June) rather than summer (July and August) and autumn (September), which was −2.03 K, −0.73 K and −1.08 K respectively. Non-radiative mechanisms dominated the local temperature response to paddy field expansion from rain-fed farmland in the Sanjiang Plain. The contributions from the changes to the combined effects of the non-radiative process were 123.6%, 95.5%, and 66.9% for spring (May and June), summer (July and August), and autumn (September), respectively. Due to the seasonal changes of the biogeophysical properties for rain-fed farmland and paddy fields during the growing season, the local surface temperature responses, as well as their contributions, showed great seasonal variability. Our results showed that the cooling effect was particularly obvious during the dry spring instead of the warm, wet summer, and indicated that more attention should be paid to the seasonal differences of these effects, especially in a region with a relatively humid climate and distinct seasonal variations

    AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua

    No full text
    Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua. It’s important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua, named AaEIN3. Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua, indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1, and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway

    Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine

    No full text
    Identifying organic matter in laminae is fundamental to petroleum geology; however, many factors restrict manual quantification. Therefore, computer recognition is an appropriate method for accurately identifying microscopic components. In this study, we used support vector machine (SVM) to classify the preprocessed photomicrographs into seven categories: pyrite, amorphous organic matter, mineral matter, alginite, sporinite, vitrinite, and inertinite. Then, we performed a statistical analysis of the classification results and highlighted spatial aggregation of some categories using the kernel density estimation method. The results showed that the SVM can satisfactorily identify the macerals and minerals of the laminae, and its overall accuracy, kappa, precision, recall, and F1 are 82.86%, 0.80, 85.15%, 82.86%, and 82.75%, respectively. Statistical analyses revealed that pyrite was abundantly distributed in bright laminae; vitrinite and sporinite were abundantly distributed in dark laminae; and alginite and inertinite were equally distributed. Finally, the kernel density maps showed that all classification results, except inertinite, were characterized by aggregated distributions: pyrite with the distribution of multi-core centers, alginite, and sporinite with dotted distribution, and vitrinite with stripe distribution, respectively. This study may provide a new method to quantify the organic matter in laminae

    Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine

    No full text
    Identifying organic matter in laminae is fundamental to petroleum geology; however, many factors restrict manual quantification. Therefore, computer recognition is an appropriate method for accurately identifying microscopic components. In this study, we used support vector machine (SVM) to classify the preprocessed photomicrographs into seven categories: pyrite, amorphous organic matter, mineral matter, alginite, sporinite, vitrinite, and inertinite. Then, we performed a statistical analysis of the classification results and highlighted spatial aggregation of some categories using the kernel density estimation method. The results showed that the SVM can satisfactorily identify the macerals and minerals of the laminae, and its overall accuracy, kappa, precision, recall, and F1 are 82.86%, 0.80, 85.15%, 82.86%, and 82.75%, respectively. Statistical analyses revealed that pyrite was abundantly distributed in bright laminae; vitrinite and sporinite were abundantly distributed in dark laminae; and alginite and inertinite were equally distributed. Finally, the kernel density maps showed that all classification results, except inertinite, were characterized by aggregated distributions: pyrite with the distribution of multi-core centers, alginite, and sporinite with dotted distribution, and vitrinite with stripe distribution, respectively. This study may provide a new method to quantify the organic matter in laminae

    Overexpression of allene oxide cyclase improves the biosynthesis of artemisinin in Artemisia annua L.

    No full text
    Jasmonates (JAs) are important signaling molecules in plants and play crucial roles in stress responses, secondary metabolites' regulation, plant growth and development. In this study, the promoter of AaAOC, which was the key gene of jasmonate biosynthetic pathway, had been cloned. GUS staining showed that AaAOC was expressed ubiquitiously in A. annua. AaAOC gene was overexpressed under control of 35S promoter. RT-Q-PCR showed that the expression levels of AaAOC were increased from 1.6- to 5.2-fold in AaAOC-overexpression transgenic A. annua. The results of GC-MS showed that the content of endogenous jasmonic acid (JA) was 2- to 4.7-fold of the control level in AaAOC-overexpression plants. HPLC showed that the contents of artemisinin, dihydroartemisinic acid and artemisinic acid were increased significantly in AaAOC-overexpression plants. RT-Q-PCR showed that the expression levels of FPS (farnesyl diphosphate synthase), CYP71AV1 (cytochrome P450 dependent hydroxylase) and DBR2 (double bond reductase 2) were increased significantly in AaAOC-overexpression plants. All data demonstrated that increased endogenous JA could significantly promote the biosynthesis of artemisinin in AaAOC-overexpression transgenic A. annua
    corecore